2024 Atlantic Canadian Conference on Energy System Modelling

Moncton June 19, 2024

Énergie NB Power

the power of possibility débordant d'énergie

ower of possibility rdant d'énergie

379,418 direct customers

14 generating stations

46,365 indirect customers

3,802 MW total generating capacity

13,315 GWh total in-province sales

6,868 km transmission lines

8,363 GWh total out-of-province sales

21,717 km distribution lines

\$2.8 billion in total sales of electricity

the power of possibility débordant d'énergie

Wind Balancing and Integration Costs Study

New Brunswick Balancing Area

- Consists of New Brunswick, Northern Maine and Prince Edward Island
- Existing Wind Resources
 - 391.25 MW of capacity in New Brunswick
 - 42 MW of capacity in Northern Maine
 - 202.5 MW of capacity in Prince Edward Island
- Future Wind Resources
 - 26 MW of capacity in New Brunswick

Study Rationale

- Non-dispatchable resources increase variability
- NB Power resources are utilized to meet and perform balancing services for this increased variability
- Study objectives
 - What does this cost?
 - How does it change over time?
 - How do costs change with additional wind?

Cost Drivers

- Intra Hour Variability
 - Impact of wind generation output changes second-to-second and minuteto-minute
 - Met by fast acting generation sources
- Inter Hour Variability
 - Impact of wind generation output changes hour-to-hour
 - Met by generation dispatch and system posturing
- Wind Forecast Error
 - Differences between forecasted and actual wind generation
 - Met by system re-dispatch and fast acting generation sources

Intra Hour Variability

- Short term variability met through capacity based ancillary services
 - Automatic Generation Control (AGC)
 - Load Following
- Compare dispatch of actual wind against average hourly wind

- Scenario 1
 - Actual wind profile
 - Actual AGC and Load Following
- Scenario 2
 - Hourly Average Wind
 - AGC and Load Following without wind impact

Inter Hour Variability

- Cost impact of natural hourly variability of non-dispatchable wind
- Compare dispatch of actual wind against average weekly wind

• Scenario 1

- Actual wind profile
- Actual AGC and Load Following
- Scenario 2
 - Weekly Average Wind
 - AGC and Load Following without wind impact

Wind Forecast Error

- Cost impact of variation between day-ahead wind forecast, hour-ahead wind forecast and actual wind generation
- Compare dispatch without wind forecasts against dispatch resulting from inclusion of wind forecasts

Day Ahead vs Hour Ahead vs Actual Wind

- Scenario 1
 - Actual wind profile
 - Actual AGC and Load Following
- Scenario 2
 - Day Ahead Forecast (Unit Commitment)
 - Hour-Ahead Forecast (Interchange Schedules)
 - Actual Wind (Final Dispatch)

Differences between the scenarios determine each component of the balancing cost

Forecast Error Scenario System Cost	
Wind Forocast Error Cost	-
Base Scenario System Cost	Total Balancing Cost
Intra Hour Balancing Cost	_
Inter Hour Balancing Cost	—
Inter Hour Scenario System Cost	

Now What?

- Total Balancing Cost
 - Inform developers of anticipated costs
 - Inform pricing of power purchase agreements
 - Set rates for providing balancing services
- Future Expansion Planning
 - Include balancing cost when comparing future generation options

QUESTIONS?

he power of possibility lébordant d'énergie Craig Church Senior Corporate Modeler Corporate Planning NB Power