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Artificial Intelligence holds the key to unlocking the
full potential of renewable energy, enabling smarter
grids, optimizing energy use, and accelerating the

global transition to a sustainable future.

*Global Shift Towards Renewable Energy

o Rapid adoption of wind and solar power worldwide

o Commitments to reduce carbon emissions and combat climate change

*Challenges in Renewable Energy Integration

o Intermittent and unpredictable nature of renewable sources

o Technical and operational issues affecting grid stability and reliability

*Objective of the Presentation

o Explore how advanced control algorithms and Artificial Intelligence
(Al) can enhance the integration of renewable energy into power grids

o Focus on increasing grid stability, reliability, and market access for
renewable energy




Challenges in Renewable Energy

N L
v *Technical Challenges

o Variability and Intermittency: Renewable energy sources like wind and
solar are inherently variable, leading to fluctuations in power
generation.

o Grid Stability: Maintaining consistent voltage and frequency levels
becomes challenging with the integration of intermittent energy
sources.

— o Real-Time Supply and Demand Balancing: The unpredictability of
renewable energy generation complicates the matching of supply with
consumer demand.

o Energy Storage Limitations: Current storage technologies may not
adequately compensate for periods of low renewable energy
generation.
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*Enhancing Grid Stability and Reliability

o Real-Time Monitoring and Control: Implementing Al-driven systems
for continuous observation and immediate response to grid
fluctuations.

o Predictive Maintenance: Utilizing machine learning models to
anticipate equipment failures, thereby reducing downtime and
maintenance costs.

+ Optimizing Energy Distribution

o Dynamic Load Balancing: Employing Al algorithms to adjust energy
distribution in response to real-time demand and supply variations.

o Minimizing Transmission Losses: Applying advanced control strategies
to enhance the efficiency of energy transmission across the grid.




Machine Learning Models for Generation
Forecasting

+Utilizing Historical and Real-Time Data
*  Data Sources: Incorporation of weather patterns,
wind speeds, solar irradiance, and historical
generation data. Get Data Train Model Improve
*  Data Processing: Cleaning, normalization, and
feature extraction to prepare data for model
training.
*Improving Forecast Accuracy
*  Machine Learning Techniques: Deployment of
algorithms such as Artificial Neural Networks
(ANNs), Support Vector Machines (SVMs), and
ensemble methods.
*  Model Training: Utilizing supervised learning
approaches to train models on labeled datasets.
* Validation and Testing: Implementing cross-
validation techniques to assess model
performance and prevent overfitting.

Clean, Prepare
& Manipulate Data

Source



In Grid Optimization

*Enhancing Energy Flow
o Dynamic Routing: Al algorithms adjust energy
. 25 R pathways in real-time to minimize congestion
& e and transmission losses.

4 o Load Forecasting: Machine learning models

Muclear Power Plant

Smart Houses

&1 1=y ﬂ:' predict demand patterns, enabling proactive
&7 =y y energy distribution.

e, - Integrating Distributed Energy Resources (DERs)

- \ : i o Seamless Integration: Al facilitates the
. _ 1" i ?ﬁi: incorporation of DERs like solar panels and
‘ B ¥ R B electric vehicles into the grid.
SO e i L T s o Decentralized Management: Intelligent systems
Elecricyehice Vind Powe: Flnt manage energy flows from multiple sources,

Source ensuring stability and efficiency.



Al-Driven Market Access Enhancement

* Analyzing Price and Cost Dynamics

o Real-Time Market Analysis: Al algorithms process vast datasets to provide insights into current energy prices and market
trends.

o Cost Forecasting: Machine learning models predict future costs associated with renewable energy production and
distribution.

*Developing Real-Time Energy Markets

o Dynamic Pricing Models: Al facilitates the creation of pricing structures that reflect real-time supply and demand,
promoting market efficiency.

o Enhanced Trading Platforms: Intelligent systems enable more responsive and flexible energy trading, accommodating the
variability of renewable sources.



Case Studies and Real-World Applications

«Predicting Offshore Wind Farm Power Output (European Case Study)
o Study Focus. Applied machine learning models (k-NN, Random Forest, Decision Tree,
Linear Regression) to predict power output across 29 offshore wind farms in Europe.
o Key Findings. Tree-based models provided the highest accuracy, aiding in grid
integration and operational planning.
o Real-World Impact Supports accurate power forecasting, essential for balancing grid
= supply and demand.
-~ % +Short-Term Wind Speed Forecasting (Lillgrund Offshore Wind Farm)
o8 ;,'.: o Study Focus. Hybrid deep learning model (Bi-LSTM with evolutionary algorithm) for
short-term wind speed prediction at Lillgrund, Baltic Sea.
o Key Findings: Outperformed standard models in |0-minute and one-hour forecasting.
o Real-World Impact Enables reliable scheduling and cost-efficient operations,
minimizing offshore wind variability.
*Data Science for Offshore Wind Energy in Norway
Source o Study Focus: Utilized transfer learning and other ML techniques for resource assessment
and decision-making in Norwegian offshore wind farms.
o Key Findings: Improved resource prediction and operational efficiency.
o Real-World Impact Enhanced integration intfo energy markets, contributing to cost
reductions and grid stability.
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Learning and Energy Storage Systems

Evaluating Solar Power Forecasting Robustness: A
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(This article belongs to the Special Issue Advances in Thermal Energy Storage in Fire Prevention and Control)

Abstract

Thermal Energy Storage (TES) plays a pivotal role in the fire protection of Li-ion batteries, especially for the high-voltage (HV) battery systems in
Electrical Vehicles (EVs). This study covers the application of TES in mitigating thermal runaway risks during different battery charging/discharging
conditions known as Vehicle-to-grid (V2G) and Grid-to-vehicle (G2V). Through controlled simulations in Simulink, this research models real-world
scenarios to analyze the effectiveness of TES in controlling battery conditions under various environmental conditions. This study also integrates
Machine Learning (ML) techniques to utilize the produced data by the simulation model and to predict any probable thermal spikes and enhance the
system reliability, focusing on crucial factors like battery temperature, current, or State of charge (SoC). Feature engineering is also employed to
identify the key parameters among all features that are considered for this study. For a broad comparison among different models, three different ML
techniques, logistic regression, support vector machine (SVM), and Naive Bayes, have been used alongside their hybrid combination to determine
the most accurate one for the related topic. This study concludes that SoC is the most significant factor affecting thermal management while grid
power consumption has the least impact. Additionally, the findings demonstrate that logistic regression outperforms other methods, with the
improving feature to be used in the hybrid models as it can increase their efficiency due to its linearity capture capability.

Keywords: thermal energy storage; fire protection; Li-ion batteries; electrical vehicles; vehicle-to-grid, machine learning; simulink
simulation; feature engineering
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A proposed controller for real-time management
of electrical vehicle battery fleet with

MATLAB/SIMULINK
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A proposed controller for real-time management
of electrical vehicle hattery fleet with
MATLAB/SIMULINK =
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A proposed controller for real-time management
of electrical vehicle hattery fleet with
MATLAB/SIMULINK ( talk about the charging type )

* Reduced Power Fluctuations: The controller smooths out power | 11 ] H [T
consumption, leading to a more consistent load on the grid. e e S
+ Efficient Energy Management: By coordinating the battery

operations based on factors like SoC and power demand, the ’ ) Tame (PAD
controller improves the overall energy efficiency of the ST T
system.
* Grid Stability: A stable power profile reduces stress on the off
grid infrastructure, which is especially beneficial in systems 3
with high renewable energy penetration. )
* Cost Savings: The optimized charging and discharging cycles il
can reduce electricity costs, benefiting both the grid operator 20
and the end-users.
* Upcoming paper: A Hybrid Machine Learning Framework for 0}
One-Hour Ahead Prediction of Electric Vehicle State of PRI Y TR, AN
Charge: Integrating Feature Engineering and Explainable Al .40-!‘”"*' i [ ey
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Figure 24 Total grid power consumption without controller



Evaluating Solar Power Forecasting Robustness: R Comparative Analysis of
KGBoost, RNN, KNN, RF, and LSTM with emphasis on Lagged Steps,

Sensitivity, and Cross-Validation Techniques

=
o ANI KANNAL - UPDATED 4 YEARS AGO - M New Notebook &, Download (2 MB) @

Solar Power Generation Data

Solar power generation and sensor data for two power plants.

Data Card Code (258) Discussion (21)  Suggestions (0)

About Dataset

This data has been gathered at two solar power plants in India over a 34 day period. It has two pairs of files - each pair has one power
generation dataset and one sensor readings dataset. The power generation datasets are gathered at the inverter level - each inverter has
multiple lines of solar panels attached to it. The sensor data is gathered at a plant level - single array of sensors optimally placed at the plant.

There are a few areas of concern at the solar power plant -
1. Can we predict the power generation for next couple of days? - this allows for better grid management

2. Can we identify the need for panel cleaning/maintenance?

3. Can we identify faulty or suboptimally performing equipment?

Usability @
10.00

License
Data files © Original Authors

Expected update frequency
Never

Tags

Renewable Energy



Evaluating Solar Power Forecasting Robustness: A Comparative Analysis of
KGBoost, RNN, KNN, RF, and LSTM with emphasis on Lagged Steps,
sensitivity, and Cross-Validation Techniques

XGBoost

® Powerful ensemble
learning method
® High efficiency,
accuracy, and scalability
¢ Utilizes decision trees to

correct errors iteratively

® Captures sequential
dependencies in data
¢ Ideal for time series
forecasting
e Uses internal loops to
maintain me mory of

previous inputs

LSTM

e Captures long-term
dependencies in
sequential data

® Mitigates the vanishing
gradient problem in
RNNs
® Flexible with varying
input and output

sequence lengths

KNN

® Simple and effective for
regression tasks
® Predicts values based on
'k' nearest data points
® Performance influenced
by choice of 'k' and
distance me tric

® Ensemble of multiple
decision trees
® Qutputs mean prediction
for regression problems
® Robust against
overfitting, handles large
datasets with high

dime nsionality



Evaluating Solar Power Forecasting Robustness: A Comparative Analysis of
NGBoost, RNN, KNN, RF, and LSTM with emphasis on Lagged Steps,
sensitivity, and Cross-Validation Techniques
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Evaluating Solar Power Forecasting Robustness: R Comparative Analysis of
KGBoost, RNN, KNN, RF, and LSTM with emphasis on Lagged Steps,
Sensitivity, and Cross-Validation Techniques

Mean Squared Logarithmic Error
(MSLE)

A MSLE =1 Y7 (log(1 + i) — log(1 + §i))?

r Mean Absolute Error (MAE)
’ B IMAE =230 |yi — il

Evaluation

Metrics

Mean Percentage Error (MPE)

MPE = 130 | (42 x 100%

R-squared (Coefficient of Determination)
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Evaluating Solar Power Forecasting Robustness: R Comparative Analysis of
KGBoost, RNN, KNN, RF, and LSTM with emphasis on Lagged Steps,
Sensitivity, and Cross-Validation Techniques
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Results Summary:

I.XGBoost:
l.

21STM:

Shows stable performance with
high R and low errors (MPE,
MSLE, MAE).

Consistently outperforms others,
especially in no-lag and
minimal-lag sections.

Performs well but suffers when
lag increases, impacting RZ and

MAE.

3.RNN and KNN:

Show inconsistent results; higher
errors in multiple metrics.

4 Random Forest (RF):

Provides moderate accuracy but
less effective compared to
XGBoost, especially with larger

lag.



Benefits of Al and ML Integration

*Technical Advantages

(@)

Enhanced Grid Resilience: Al-driven predictive maintenance
and real-tfime monitoring improve grid stability and reduce
downtime.

Optimized Energy Distribution: Machine learning algorithms
enable efficient load balancing and minimize transmission
losses.

Improved Forecast Accuracy: Advanced models provide precise
predictions of energy generation and consumption, facilitating
better planning.

* Economic and Market Benefits

(@)

Cost Reduction: Automation and optimization lead to lower
operational costs and reduced reliance on backup power
sources.

Increased Market Access: Al facilitates dynamic pricing and
real-time trading, enhancing the competitiveness of
renewable energy in the market.

Investment Promotion: Demonstrated efficiency and reliability
attract investments in renewable energy technologies.

Source
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concIHSIon *Key Takeaways

o Integration Challenges: Renewable energy sources present
variability and unpredictability, posing challenges to grid stability
and reliability.

o Al and ML Solutions: Advanced control algorithms and machine
learning models enhance forecasting accuracy, optimize energy
distribution, and improve market access.

o Benefits: Implementing Al and ML leads to increased grid
resilience, cost reductions, and greater investment in renewable
technologies.

*Outlook

o Technological Advancements: Continued development in Al and
ML will further enhance renewable energy integration and grid
management.

o Policy and Collaboration: Supportive policies and collaboration
among stakeholders are essential to maximize the benefits of Al in

Source the energy sector.

o Sustainable Growth: Leveraging Al and ML will facilitate a more
sustainable and efficient energy future, aligning with global
environmental goals.
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