
Offshore Wind

Battery Energy Storage System

Saverio Ventrelli Global Sales Responsible, Battery Energy Storage for M&O

Offshore Wind: Typical Grids

Offshore Wind: O&G decarb or non-grid connected island

Possible challenges

- Grid stability
- Capacity Firming
- FR & VC
- Black start
- · Ramping flexibility
- System balancing (Generation)

Possible opportunities

- Investment deferral
- Arbitrage

Possible challenges

- Grid stability
- Black start
- System balancing (Generation)

Possible opportunities

- OPeX decrease
- CO2 emission lowering
- Investment deferral

Challenges

- IMO requirements
- OPeX decrease
- · Reliability, Availability and Safety

Opportunities

- Green profile
- Preferred supplier in the offshore renewable
 Offshore Wind vessels

SIEMENS COCIGY

Siemens Energy is a registered trademark licensed by Siemens AG.

2 Restricted © Siemens Energy, 2022

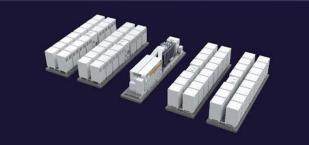
Our Storage Offerings Portfolio Overview

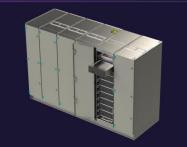
Storage

Storage capabilities

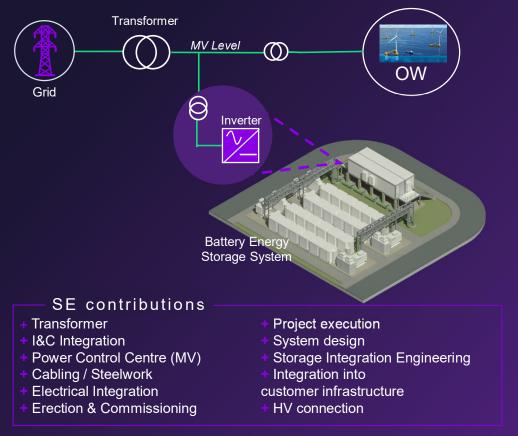
- Offer turnkey solutions for battery energy storage systems (BESS), including system design and grid integration
- Additionally provide I&C delivery, performance monitoring software as well as service concepts

Grid-connected solutions


Provide modular and scalable grid connected BESS for various use cases, such as grid balancing, peak shaving, capacity firming, provision of backup power and grid stability improvement.


Short time solutions

- Offer storage solutions for off-grid applications offshore or onshore locations
- with high requirements for safety and reliability
- Improve the security of energy supply



▼ Visit the website

BESS + Offshore Wind

Improvements of Environment Flexibility Availability Revenue

Benefits

- Extend plant capability and flexibility Avoid curtailment
- Capacity firming Enable discharge in time no wind/sun is available / avoid drops during no wind or clouds
- Capacity payment Participate in capacity/ grid service market

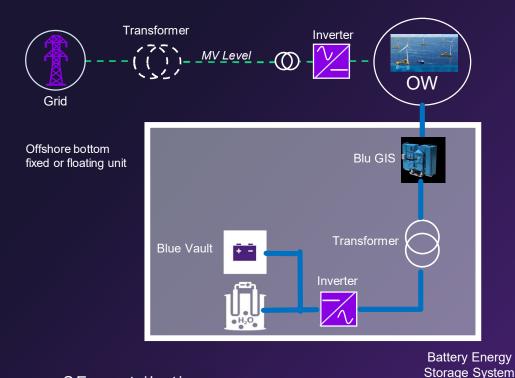
Typical Power / Capacity – Losses & Duration

Power:

- 2 100 MW (up to >500 MW)
- Capacity:

- 2 400 MWh (up to >1000 MWh)
- Standby Losses:
 - $\sim 1\%$ / month
- Discharge Duration: Typically 1 - 4h

Typical footprint


- 1MWh ~ 25 50m² (ground level arrangement)
- 1MWh ~ 12 25m² (multi-level arrangement)

Typical project lead time

12 – 18 months depending by the battery technology and size

¹⁾ Trademark needs to be defined

BlueWind for H2 in Offshore Wind

SE contributions

- + Transformers
- + I&C Integration
- + Blue GIS
- + Cabling / Steelwork
- Electrical Integration
- Erection & Commissioning

- Project execution
- + System design
- Storage Integration Engineering
- + Integration into
- customer infrastructure
- + HV connection

Improvements of Environment Flexibility Availability Revenue

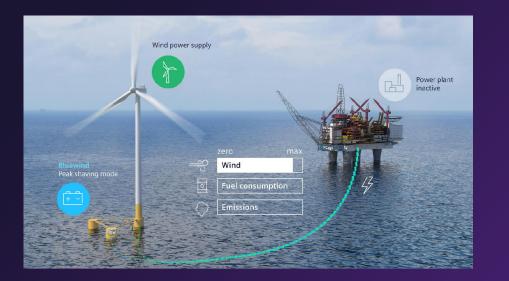
Benefits

- Capacity firming Enable electrolyser working in stable conditions also with wind fluctuations
- Capacity payment Increase H2-production
- High safety requirements for working in areas with H2
- Marine & Offshore class approved BESS
- Fast response and high charge/discharge rate

Typical Power / Capacity - Losses & Duration

- Power:
- 50 500 MW
- Capacity:
- 1 10MWh (up to >100MWh)
- Discharge Duration: Typically up to 1h

Typical footprint


 2MWh ~ 40" container including PCS and up to 33kV transformer (ground level arrangement)

Typical project lead time

12 – 15 months depending by the size

¹⁾ Trademark needs to be defined

BlueWind for Off-grid: Decarbonization and electrification of existing O&G assets or islands not connected to Grid

BlueWind The next generation of the offshore wind microgrid enabling decarbonization (up to 70%) and electrification (up to 55%) of O&G assets when connected to Offshore Wind

Key Features

Standard solution. TRL = 7

Easy interface. No need for modification on the O&G asset

Increased Efficiency

Blackout Prevention

ЪШ

- Grid and Frequency Stability
- Remote Condition & Performance Monitoring

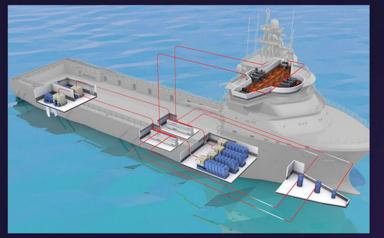

Operational Benefits

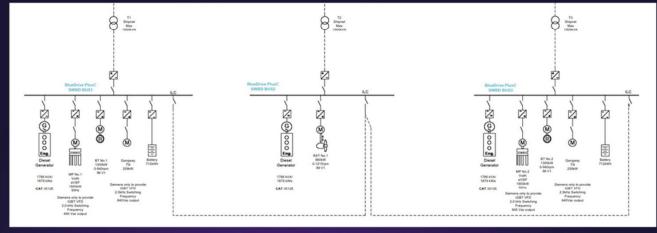
Ŵ

6

- Up to 70% emissions reduction
- 45% 55% electrification of the O&G asset
- High charge/discharge rate fit for space constraint plants
- Significant OPEX reduction (fuel and maintenance cost savings)
- Increased revenue
- Increased powerplant reliability
- Increased safety and HSE (less noise land twile rations) ens Energy, 2020

Siemens Energy / Offshore Wind farm related vessels references


VSV | NOR S M&O1 17 Restricted © Siemens Energy, 2023


09.10.2023

Siemens Energy / Scope of Supply BlueDrive PlusC/BlueVault – Hybrid Power plant with DC distribution

Fuel and environmentally friendly solution

- Only one(1) variable speed genset in operation during w2w operation
- ✓ Battery system to handle Peak Shaving and Spinning Reserve
- Siemens Energy SOVs daily fuel consumption in wind park 3-5 ton MGO
- ✓ Standard for SOVs daily fuel consumption 8-10 ton MGO

VSV | NOR S M&O1 18 Restricted © Siemens Energy, 2023