Heat Pump Thermal Storage Study

Modelling the use of phase change materials to store thermal energy in residential heat pump systems.

Jacob Woods, Abby Legere and Wayne Groszko NSCC Applied Research

Louis Desgrosseilliers Neothermal Energy Storage Inc.

Dan Curwin and Daniel Larsen Stash Energy

Reda Djebbar Natural Resources Canada

Supported by Net Zero Atlantic Emerging Concepts and Technologies Program Heat pump unit

Heat exchanger water is heated storage tank

Hot water supply

Hot water supply

Hot water supply

For intriperant flow water supply

God Expansion valve Water pump

Hot water supply

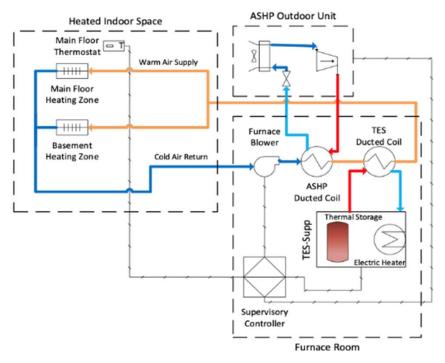
Water is heated storage tank

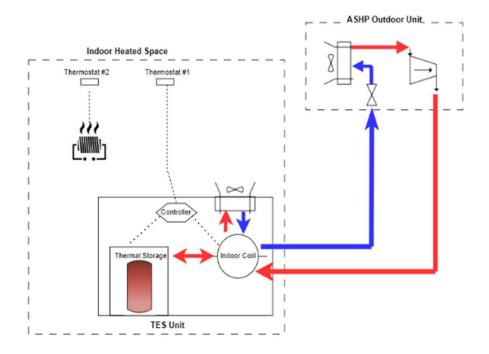
For C Plastic Encapsulated Phase Change Material Thermal Energy Storage Balls

Cold water supply

Presented at Atlantic Canadian Energy Modelling Conference, Halifax, June 2025

What did we study?


- We modelled two thermal energy storage solutions for home heating from Atlantic Canada that both use air source heat pumps and phase change materials.
- Phase change materials store heat by passing through a phase transition.
- The materials modelled here have their phase change at a temperature that is feasible for an air source heat pump to reach (around 60°C).
- We used dynamic building energy simulations to estimate the ability of these systems to shift space heating electricity demand out of peak demand times.


Example thermal storage unit. Image: Stash Energy

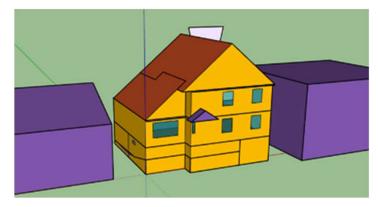
The two thermal storage solutions

Supplemental Thermal Storage

Integrated Thermal Storage

Why Study This?

- There are approximately 400,000 single family homes in Nova Scotia.
- A significant portion already use electric heating.
- A rapid increase in the use of heat pumps for home heating is underway in this region.
- Using thermal storage can shift electricity demand away from peak hours.
- Combining heat pumps with thermal energy storage allows 2-in-1 benefits:
 - Energy efficiency of heat pumps (COP 2-3)
 - Demand response through energy storage



House #4: Halifax

Methods

- Used TRNSYS (Transient System Simulation Tool) to model energy flow in 5 different house examples.
 - 3 were archetypes provided by NRCan.
 - 2 were models of real homes.
- Modelled performance of the two heat pump thermal storage systems through a winter heating season.
 - Used real weather data from 2015 (a cold winter).
- Used modelling to estimate how much electricity each system could shift out of peak demand times, compared with a baseline model.

TRNSYS Model of House #4: Halifax

What did we find?

- Integrated and supplemental systems were both able to shift 50-60% of heating electricity out of the on-peak periods (for their respective heating loads).
- The integrated system led to a decrease in heating bills by taking advantage of off-peak rates but had less ability to decrease peak power demand.
- The supplemental system led to an increase in heating bills but had greater ability to decrease peak power demand.

Discussion and next steps

- Thermal energy storage for space heating is one of a suite of tools for distributed demand response. (Other examples include domestic hot water and EV chargers).
- It can work at scale with supportive incentives.
- In future, a building-level integration system to respond to dynamic varying electricity prices can take advantage of opportunities for demand response.
- We are looking for opportunities to conduct field trials with real units to test modelling results.

House #4: Halifax

Thank you!

Wayne Groszko, Ph.D.

email: wayne.groszko@nscc.ca

phone: +1 902 476 9655

nscc.ca

