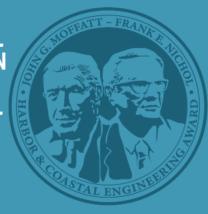
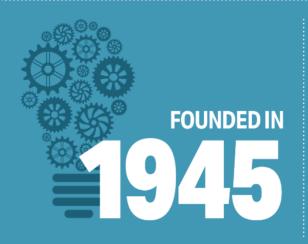
Development of OSW ports in Atlantic Canada

September 24, 2025


Moffatt & Nichol



FOCUSED ON PORTS
& MARITIME
PLANNING AND
DESIGN

AMERICAN
SOCIETY OF CIVIL
ENGINEERS JOHN
G. MOFFATTFRANK E. NICHOL
HARBOR AND
COASTAL
ENGINEERING
AWARD

80%
REPEAT BUSINESS

Moffatt & Nichol OSW Port Experience

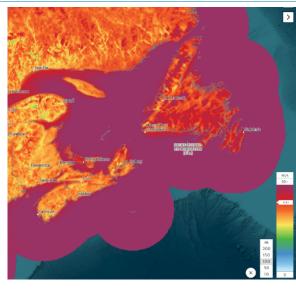
- Ports & Maritime Consultancy with 80 years of experience
- Dedicated division that deals exclusively with OSW ports
 - Site selection
 - Feasibility studies
 - Planning
 - Logistical Modeling
 - Detailed Design
- 20+ OSW port feasibility studies
- 10+ Detailed designs for OSW ports
- Continuous contact with OSW Developers & OEMs

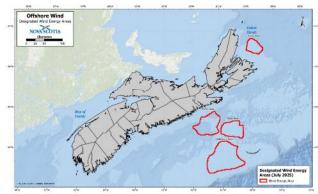
How I got Here

- M&N awarded NZA Atlantic Assessment of Atlantic Canadian Ports to Support OSW Development
- Establish Criteria for required for ports required to service the industry
- Ports to support both fixed bottom and floating OSW
- Focus on large marshalling and staging & integration ports
- Canadian and US OSW roll outs
- Port Layouts and Cost Estimates

To lead applied research and contribute to projects that enable the transition of Atlantic Canada's energy system to a carbon-neutral future through collaboration with academia, governments, private sector, Indigenous Peoples and other non-government organizations.

Project Funders


OSW Atlantic Canada


moffatt & nichol

why are we here

Best in World Wind Resource

- Nova Scotia 5 GW of leases by 2030
- Four Nova Scotia Wind Energy Areas identified
- Nova Scotia call for Bids end of 2025
- New Brunswick, Newfoundland and Labrador developing OSW plan

Four OSW Power Delivery Models

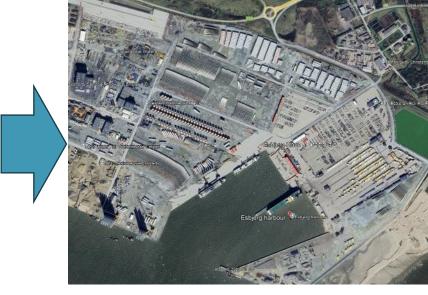
- 1. Power Atlantic Canada
- 2. Power greater Canada (east-west transmission)
- 3. Power US East Coast (north-south transmission)

4. Green Hydrogen Exports (commoditize OSW)

Rules of Presentation

- Lots of numbers and stated criteria
- These should be considered recommendations and not absolute minimums
- Port requirements
- Required CAPEX
- Demand on larger marshalling and staging & integration ports is significant
- These are specialty ports and quite often purpose built
- Highest port loading capacity in the world

The Basics



NO OSW PORTS = NO OSW

OSW Port Design Drivers

OSW port Design Drivers(15-20 MW)

OSW Port Criteria

Fixed vs. Floating Criteria

FIXED BOTTOM CRITERIA	VALUE		
Wharf Length	400m		
Wharf Bearing Capacity	25-30 T/m ²		
Uplands Area	14 to 20 ha		
Uplands Bearing Capacity	15 T/m ²		
Draft at Berth (MLLW)	11m		
Air Draft	Unlimited		
Channel Width	115-225m		

^{*}Two Distinct Berths for Optimal Operations Delivery, Install

Port of Eemshaven, Netherlands

Port of Nigg, Scotland

FLOATING CRITERIA	VALUE
Wharf Length	600m+
Wharf Bearing Capacity	25-30 T/m ²
Uplands Area	35 to 55 ha
Uplands Bearing Capacity	15 T/m ²
Draft at Berth (MLLW)	11m
Air Draft	Unlimited
Channel Width	150-200m
Wet Storage Area	8-20 ha

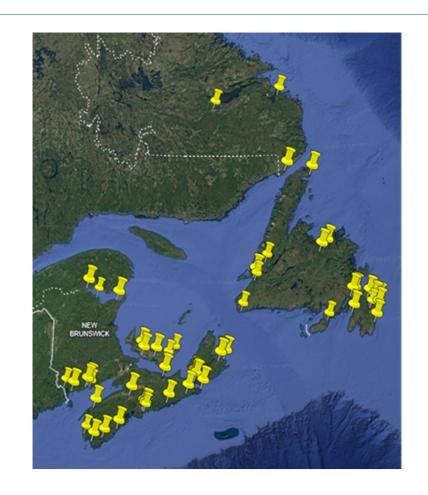
^{*}Three Distinct Berths for Optimal Operations Delivery, S&I, Foundation Launch

Humboldt Harbor District OSW Port, CA, USA

Atlantic Canada OSW Ports

Study Driven vs Market Driven

- Identifies potential ports and establishes feasibility of ports to service the OSW industry
- Raises awareness of critical role of OSW ports (no OSW ports = no OSW)
- Industry
- Government
- Establishes high order of magnitude costs to bring OSW ports online
- Not meant to grade or contrast ports



- Canada will award leases
- OSW developers that win leases will begin to plan proposed projects
- Each OSW developer will have market driven reasons for port selection
 - Proximity to lease
 - Capabilities of port
 - Timeline to operational
 - Cost to occupy port
 - Workforce

Methodology

- Establish Criteria
- Create Long List (77 ports)
- Red Flag analysis (26 Ports)
- Outreach to 25 Ports
- Selection of Shortlist (10 Ports)
 - Met requirements and agreed to participate
- Gap Analysis
- Creation of Cost Estimate (ROM)
- Time to Become Operational
- Port Layouts
- Estimate # of ports required for varying OSW rollout scenarios
- Infrastructure buildout (# ports) should match OSW roll out (GWs)

Results

Shortlisted Ports		dare and other	A
		91	
Port of Belledune	Gulf of St. Lawrence	Channel Port Aux Basques Port of Mortier Bay	0
Piece Edward to	Novaporte Q A	tlantic Canada Bulk Terminal	
	Paper Melford In	nternational Terminal	
	ggt - S		The second

- Three selected ports have already supported OSW Activities
 - Argentia
 - ACBT
 - Sheet Harbor

Port Name	Region	Fixed Marshalling	FLOW Staging & Integration	FLOW Foundation Assembly	FLOW Combined
Port of Belledune	New Brunswick	Y	N	N	N
Port Saint John	New Brunswick	Y	Υ	N	N
Channel Port aux Basques	Newfoundland & Labrador	Υ	N	N	N
Port of Argentia	Newfoundland & Labrador	Υ	Υ	Y	Y
Port of Mortier Bay	Newfoundland & Labrador	Υ	Υ	Y	Υ Υ
Atlantic Canada Bulk Terminal	Nova Scotia	Υ	Υ	Y	Y
Melford International Terminal	Nova Scotia	Y	Y	Y	Y
Novaporte	Nova Scotia	Y	Υ	Υ	Υ
Port of Sheet Harbour	Nova Scotia	Y	Y	Y	Υ
Port Hawkesbury Paper	Nova Scotia	Υ	Υ	N	N

Source: Moffatt & Nichol

- CAPEX (Class 5 estimate)
 - \$8.8 \$964 million
 - US OSW CAPEX \$250-\$870 million
- Development Timeline
 - 21-109 months
- Operational / Existing Port / Green Field

OSW Port Funding and Revenue

Funding

Public funding

- a) Large portion of required funds comes from government
- b) This is government contribution to bring green energy to the country
- c) Large initial CAPEX outlay

Revenue Backstop

- a) Private equity for funding
- b) Government provides revenue guarantees for holes in port usage
- c) Contribution is spread out over time

Revenue

- Short projects (leases) with unknown follow-on projects can make revenue projections difficult.
- OSW port revenue is very different than container or bulk revenue generation
- OSW port revenue is driven by lease \$/ha/year vs. tonnage over the quay.
- Scarcity of resource should be considered

Thank you

Moffatt & Nichol OSW Ports

Joshua Singer

Global OSW Ports Lead

jsinger@moffattnichol.com

+1 617.610.4845

