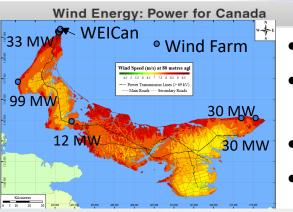


Wind Energy: Power for Canada


#### Operational Issues with Wind Turbine Blades in a Coastal Environment

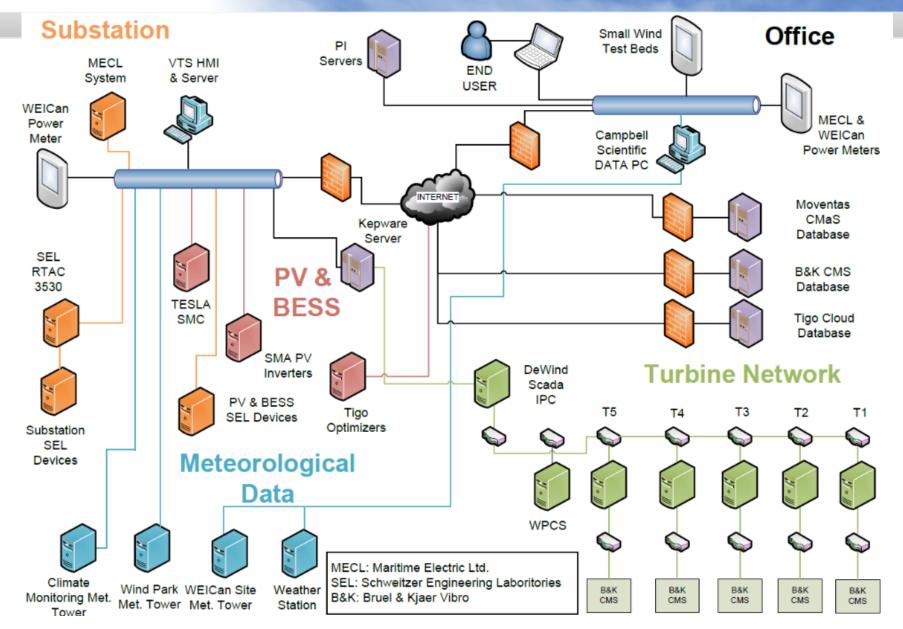


Marianne Rodgers, Robbie Sanderson, and Heather Norton
Wind Energy Institute of Canada



## Wind Energy Institute of Canada




- Located in North Cape, Prince Edward Island.
- Independent, not for profit research organization advancing development of wind energy across Canada through research, testing, innovation, and collaboration since 1981
- Team of 12 permanent full-time staff plus students and interns
- Funding from wind park and external contracts
  - WEICan's location offers
    - 38 acres
    - 300° exposure to the Gulf of St. Lawrence
    - Strong wind resource (8.9 m/s @80 m) with low turbulence
    - Harsh marine, highly corrosive environment
    - Icing events during winter months
    - Large winter/summer temperature differences



- Five 2 MW DeWind 9.2 Turbines
- 80 m met. Mast.
- 109 kW Solar Array
- 223 kWh BESS
- Climate Monitoring Station
- Robust data management system



## WEICan Data Topology



#### **AVEVA PI System**

- Over 8500 data streams for Wind R&D Park and Site
- Most are 1 Hz data

#### **Visual Systems**

- Cameras in Nacelles
- Cameras on Nacelles
- Cameras for PV array





#### Research at WEICan

- Our greatest contribution to renewable energy development is our real-world operational data and expertise
- We have two main research areas
  - Asset Management
  - Grid Integration
- Asset management research focuses on understanding, predicting, and preventing component failures
  - As wind farms age, owners question whether to maintain assets, expand operations, or discontinue investments
  - How do factors such as complex terrain, high capacity factors, icing and severe weather, cold climate, delayed maintenance cycles impact service life and/or performance?
- How can we turn component failures into research opportunities?
  - Generators
  - Bearings
  - Blades



# O&M Challenges - Blades major repair



Example of a suction side delamination. The red and green circles mark the same locations on the blades

- April 2013 Wind farm was commissioned
- Fall 2013 Blade inspection found cracks in bonding seams, delamination near roots at the suction side. Repairs undertaken.
- Summer 2014 Further inspections of T1-5 highlighted root core delamination as the biggest issue.
- 2015/16 Blades were run through a duration and ultimate failure test at a test facility. They identify the same issues with delamination that WEICan experienced.
- 2016 Consultant hired to develop repair instructions to reinforce the blades. Every blade reinforced under warranty along with a set of spares that WEICan purchased.
- 2016 WEICan bought 12 more blades. These were not reinforced.



## Blade Major Repair Timeline (Post Warranty)

#### Wind Energy: Power for Canada

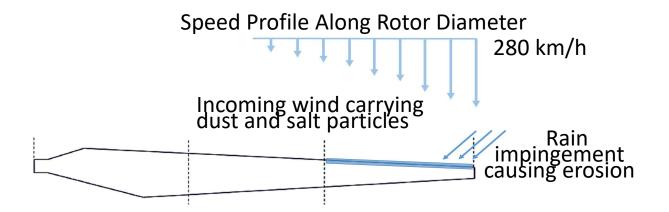
- Summer 2020 Inspection found crack near root at pressure side of 1 blade on T5. Blade was replaced and the rotor was rebalanced.
- Summer 2023 Began repairs on another set of spare blades.
- October 2024 Inspection found 4 blades with cracks near the root on the pressure side: 2 were on T4 and 2 on T5. Consultant hired to create reinforcement instructions for the pressure side. They recommended creating 'splints'.
- November 2024 3 more blades were given core ramp/shear web retrofits along with "splints"

In summary: 6 reinforced spares (3 with splints) have been used. 9 spares remain.



Service Inspection September 2024




#### WEICan Blade Summary

| Turbine    | Blade                                                                                      | Blade Commissioned                | Low-pressure side repair | High-pressure side repair |
|------------|--------------------------------------------------------------------------------------------|-----------------------------------|--------------------------|---------------------------|
| 1          | Blades 1-3                                                                                 | 2013                              | 2016                     | None                      |
| 2          | Blades 1-3                                                                                 | 2013                              | 2016                     | None                      |
| 3          | Blades 1-3                                                                                 | 2013                              | 2016                     | None                      |
| 4          | Blades 1-3                                                                                 | 2024                              | 2023-24                  | None                      |
| 5          | Blade 1                                                                                    | 2020                              | 2016                     | 2024                      |
|            | Blade 2                                                                                    | 2024                              | 2016                     | 2024                      |
|            | Blade 3                                                                                    | 2024                              | 2016                     | 2024                      |
| 4 (ground) | Blades 1-3                                                                                 | 2013 (operated for 11 years) 2016 |                          | None                      |
| 5 (ground) | Blades 1-3 2013 (blade 1 operated for 7 years, blades 2013 (blade 1 operated for 11 years) |                                   | 2016                     | None                      |

- WEICan is interested in innovative research using both its damaged and operating blades to advance wind energy operations on two subjects:
  - Advance wind energy sustainability concerning blade end of life
    - Presently most end-of-life turbine blades are disposed of in landfills or incinerated both can have significant negative impacts to the environment
  - Advance blade health monitoring
    - Blade monitoring options are under development and there are no off-the-shelf options



### Leading Edge Erosion of Wind Turbine Blades



- Wind turbine blades are exposed to precipitation and airborne particles that can erode their surface coating
- Due to the blades' high tip speeds, the portion of the blade furthest from the base usually receives 70% to 80% of the erosion damage
- Untreated, leading edge erosion can reduce energy production, increase maintenance costs and downtime, and, eventually, affect the blades' structural integrity
- Many types of leading edge protection (LEP) materials have been designed to help prevent the erosion of the blade edge



# Leading Edge Repair Timeline



- April 2013 Commissioning (no LEP product, just paint)
- March 2014 LE paint failure, erosion, pitting, first observed
- November 2014 Repair work began
- Summer 2015 Repair work complete
- November 2015 Paint failure was again observed
- Summer 2016 The turbine OEM proposed to address the issues through applying leading edge protection (warranty improvements)
  - WEICan begins field study with 4 LEP products

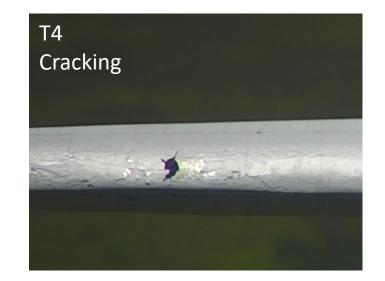
Until this point, work was under warranty with turbine OEM, after this WEICan took on the responsibility

- Summer 2019 Reapplication of most products
- March 2021 WEICan represents Canada on IEA Wind Task 46 Erosion of Wind Turbine Blades
- Summer 2021 Application of 5<sup>th</sup> LEP on T1 & T4 T4 was rejected by manufacturer
- Summer 2022 Application of 5<sup>th</sup> LEP on T2, T3 & T5, Reapplication on T4
- January 2023 Inspections show 5<sup>th</sup> LEP detached from Blade 1 leading edge and started to bubble on Blade 2 of T1
- September 2023 5<sup>th</sup> LEP repaired on T1
- Winter 2025 5<sup>th</sup> LEP applied to new blades on T5; 6<sup>th</sup> LEP applied to new blades on T4
- Spring 2025 bubbles on T3 and T5 LEP; tear on T4 LEP



## LEP Failure 2016 and 2019

Wind Energy: Power for Canada

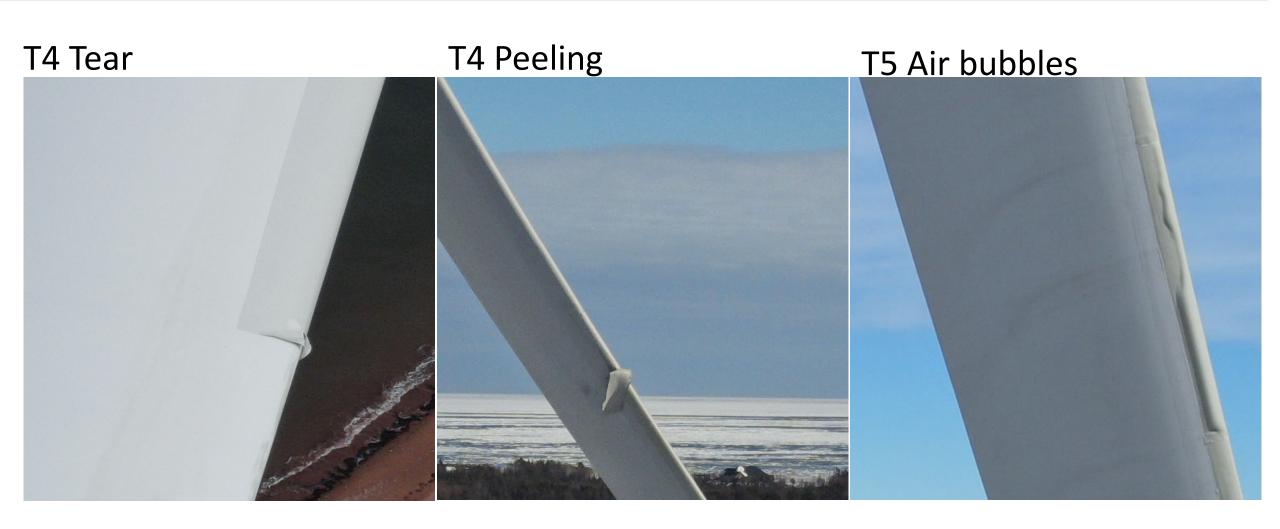

Leading edge damage was observed on most blades: - Pitting - Cracking - Peeling - Bubbling


















## LEP Failures 2022, 2023, and 2025





## Failures observed in each turbine

| LEP | Type of LEP                     | Turbine            | Date Applied, Damage observed                                              | Types of Damage Observed                              |
|-----|---------------------------------|--------------------|----------------------------------------------------------------------------|-------------------------------------------------------|
| 1   | Paint (2 component epoxy)       | T1, T5             | 2016, 2017, 2019, 2021                                                     | Pitting, cracking, peeling, bubbling                  |
| 2   | Paint (polyurethane)            | T4                 | 2016, 2017, 2019, 2021                                                     | Pitting, peeling                                      |
| 3   | Tape (2-component polyurethane) | T2                 | 2016, 2017, 2021                                                           | Pitting, peeling, bubbling                            |
| 4   | Tape (2-component polyurethane) | T3                 | 2016, 2019, 2021                                                           | Pitting, peeling bubbling                             |
| 5   | Shell (polyurethane)            | T1, T2, T3, T4, T5 | T1: 2021, 2023<br>T2: 2022<br>T3: 2022<br>T4: 2021, 2022<br>T5: 2022, 2025 | Peeling, bubbling bubbling Peeling, bubbling bubbling |
| 6   | Tape (polyurethane)             | T4                 | 2025                                                                       | Tear, peeling                                         |



# Leading Edge Repair Work Instructions

- Each type of protection has specific application instruction. Instructions typically require
  - Filling, sanding, cleaning to achieve a smooth surface
  - Max and min temperatures and relative humidities for curing and drying
- Repairs uptower have wind speed restrictions, depending on method to access the blade





### Causes of LEP Failures

- LEP providers attribute premature failures to improper/inadequate surface preparation and installation
- Usual causes:
  - Epoxies/adhesives not appropriately activated
  - Surface was not adequately cleaned
  - Blade repairs with fillers or coatings ahead of installation where still curing
  - Conditions may have been appropriate at the start, but were not sustained
  - Skills/experiences of technicians is not adequate
- Original blade manufacturing/blade quality is very important
  - How was it put together, filler, adhesion methods



## **Summary and Conclusions**

- WEICan's heavily instrumented turbines and coastal site allow observations that are relevant to offshore wind considerations
- WEICan has had issues with their wind turbine blades since beginning operation
- As a research institute, WEICan turns these operational issues into research opportunities
  - Upon discovering cracks in their blades, WEICan put out a request for expressions of interest in 2025 for:
    - Blade monitoring options
    - · Blade end of life options
  - Upon discovering blade leading edge erosion, WEICan carried out a field test for six different leading edge protection materials
    - All types of LEP showed damage in one to two years.
    - WEICan has noted that improper application and blade quality are the most important factors determining the longevity of the LEP materials, rather than the material itself
      - May be not practical to do "proper" application in the field



#### Questions

Wind Energy: Power for Canada

#### **Contact:**

Marianne Rodgers, Scientific Director

marianne.rodgers@weican.ca

WEICan is going to produce 500 GWh this fall! Follow us to see the countdown!



https://www.weican.ca/counting-down-to-500gwh/

Find us on LinkedIn:

in https://ca.linkedin.com/company/weican