Research Portal

Displaying 11 – 20 of 20 results

Filters

Faits marquants sur l’énergie marémotrice » infrastructures et pratiques exemplaires

Innovative Solutions for De-risking Species Detections in Tidal Energy Environmental Effects Monitoring Programs

April 2018 – March 2019

With collaboration from Genome Atlantic, this research project is using a new environmental DNA technology to rapidly identify and determine abundance of different fish species in high-flow marine conditions. Experiments were conducted at Dalhousie University’s Aquatron facility. N

Faits marquants sur l’énergie marémotrice » caractérisation et modélisation des ressources en énergie marémotrice

Turbine Wake Characterization

November 2017 – March 2019

Turbine wake characterization is a key endeavour to the development of in-stream tidal turbine arrays.  In a sense, a turbine’s footprint includes its wake, wherein flow speeds are less and turbulence is elevated compared to the ambient surroundings.  It is thus desired to not just deli

Faits marquants sur l’énergie marémotrice » infrastructures et pratiques exemplaires

Optimized Combinations of Tidal, Wind and Solar Electricity Generation with Energy Storage to Meet Nova Scotia’s Electrical Demand

August 2018 – March 2019

Wind, solar and tidal-generated electricity each have different, but potentially complimentary, cyclic times.

Faits marquants sur l’énergie marémotrice » vie marine

Real-Time, Targeted Imaging of Turbine-Marine Life Interactions

March 2017 – February 2019

The research goal is to redesign and validate a dynamic mount to improve targeted real-time imaging of marine life in the near-field zone of a tidal turbine. The adjustable mount will enable imaging sensors to be aimed directly facing the tidal turbine.

Faits marquants sur l’énergie marémotrice » vie marine

Finite Element Analysis to Assess Fish Mortality from Interactions with Tidal Turbine Blades

February – December 2017

The research project used finite element analysis (FEA) to simulate the impact of a tidal turbine blade on fish, and assess whether mortality of marine life can be expected in such an event.

Faits marquants sur l’énergie marémotrice » caractérisation et modélisation des ressources en énergie marémotrice

Turbulence Dissipation Rates from Horizontal Velocity Profiles at Mid-Depth in Fast Tidal Flows

December 2017

This study characterizes the turbulence in a tidal channel in the Bay of Fundy that has been identified for development as a tidal power resource.

Faits marquants sur l’énergie marémotrice » infrastructures et pratiques exemplaires

Nova Scotia Energy Sector – Targeted Export Market Analysis

February – October 2017

As part of Nova Scotia Department of Energy and Mines’ (NSDEM) mandate to investigate economic opportunities for Nova Scotia technology developers and supply chain service providers, a global energy market analysis was commissioned.

Faits marquants sur l’énergie marémotrice » technologies

FORCE Data Management System/User Interface

April – June 2017

This project defined a Data Management System (DMS) and user interface solution for use by FORCE.

Faits marquants sur l’énergie marémotrice » technologies

Impact of Channel Blockage on the Performance of Axial and Cross-Flow Hydrokinetic Turbines

April 2017

This work investigates the effect of channel blockage on how axial and cross-flow turbines perform. The objective is to fill a gap in the literature on suitable blockage corrections for cross-flow turbines.

Faits marquants sur l’énergie marémotrice » caractérisation et modélisation des ressources en énergie marémotrice

High-Resolution Numerical Model Resource Assessment of Minas Passage, Bay of Fundy

January 2017

Two numerical models developed by the Acadia Tidal Energy Institute are described. The models simulate the tidal flow in the Bay of Fundy, and in particular the Minas Passage. The models have different grid resolution, one suitable for site assessment and one suitable for resource assessment.