Research Portal

Displaying 1 – 6 of 6 results

Filters

Faits marquants sur l’énergie marémotrice » technologies

Imaging Sonar Data Automation Feasibility Study

May 2021 – June 2022

Multibeam imaging sonars can be used to monitor fish and marine mammal presence and behaviours in the near-field of tidal turbine installations, including evaluating avoidance, evasion, and potential blade strikes.

Faits marquants sur l’énergie marémotrice » technologies

FORCE Data Management System/User Interface

April – June 2017

This project defined a Data Management System (DMS) and user interface solution for use by FORCE.

Faits marquants sur l’énergie marémotrice » technologies

Impact of Channel Blockage on the Performance of Axial and Cross-Flow Hydrokinetic Turbines

April 2017

This work investigates the effect of channel blockage on how axial and cross-flow turbines perform. The objective is to fill a gap in the literature on suitable blockage corrections for cross-flow turbines.

Faits marquants sur l’énergie marémotrice » technologies

Advancing Tidal Energy Turbine Operations through High Fidelity Tug Propulsion and Control Simulation Software

November 2016 – March 2017

The project objective was to develop a numerical model of a tug boat and its propulsion system to accurately predict its dynamic behaviour in turbulent tidal flows.

Faits marquants sur l’énergie marémotrice » plancher océanique, sédiments et domaine benthique

Impacts of Tidal Energy Extraction on Sediment Dynamics in Minas Basin, Bay of Fundy

February 2010 – December 2012

Researchers developed a numerical hydrodynamic and sediment transport model for Minas Basin in the Bay of Fundy, focusing on the sediment dynamics of the tidal inlets and flats.

Faits marquants sur l’énergie marémotrice » plancher océanique, sédiments et domaine benthique

Effects of Energy Extraction on Sediment Dynamics in Intertidal Ecosystems of the Minas Basin

January 2010 – May 2012

This project assessed how the dynamics of sedimentation change when energy is extracted from a macro-tidal system. The differences in tidal prism and energy between neap and spring tidal cycles were used as a proxy for energy extraction by in-stream tidal power devices.