Research Portal

Displaying 1 – 10 of 11 results

Filters

Faits marquants sur l’énergie marémotrice » technologies

The Pathway Program: Validating reliable environmental monitoring for ocean energy projects

April 2019 – October 2021

OERA created The Pathway Program to solve a critical problem impeding the in-stream tidal energy industry: a lack of reliable and validated technologies and methods to monitor and report fish-turbine interactions in high-flow, highly turbulent environments, leading to regulatory uncertainty and i

Faits marquants sur l’énergie marémotrice » technologies

Participation in the Pathway Program through Development of the Platform and Cabling Solution

February 2020 – September 2021

The Pathway Program - Cable & Platform Development / Sensor Integration

Faits marquants sur l’énergie marémotrice » infrastructures et pratiques exemplaires

Review of Nova Scotia Power Transmission System Interconnection Requirements

April – May 2021

Power Advisory was engaged by OERA on behalf of the Nova Scotia Department of Energy & Mines to review the recently released Nova Scotia Power Transmission System Interconnection Requirements (TSIR) and identify any gaps between recommendations made by Power Advisory in their August 2020 repo

Faits marquants sur l’énergie marémotrice » technologies

Automated post-processing, using machine-learning models; Automated analytical tools (that generate estimates of fish frequency, abundance, and distribution)

April 2020 – May 2021

The Pathway Program - Data Automation: Echosounders

Faits marquants sur l’énergie marémotrice » technologies

Environmental Monitoring System Development

November 2019 – April 2021

The Pathway Program - Technology Validation: Echosouders & Passive Acoustic Monitoring Device

Faits marquants sur l’énergie marémotrice » aspects socio-économiques et utilisations traditionnelles » Strategic Environmental Assessments (SEAs)

Marine Renewable Energy: Background Report To Support a Strategic Environmental Assessment (SEA) for the Cape Breton Coastal Region, inclusive of the Bras D’Or Lakes

June – December 2012

In 2011 following a competitive request for proposal process, OERA commissioned AECOM’s Halifax office to undertake a Strategic Environmental Assessment (SEA) for marine renewable energy in Cape Breton.

Faits marquants sur l’énergie marémotrice » plancher océanique, sédiments et domaine benthique

Impacts of Tidal Energy Extraction on Sediment Dynamics in Minas Basin, Bay of Fundy

February 2010 – December 2012

Researchers developed a numerical hydrodynamic and sediment transport model for Minas Basin in the Bay of Fundy, focusing on the sediment dynamics of the tidal inlets and flats.

Faits marquants sur l’énergie marémotrice » aspects socio-économiques et utilisations traditionnelles » Strategic Environmental Assessments (SEAs)

Cape Breton Tidal Energy Resource Assessment

November 2011 – October 2012

In support of the Strategic Environmental Assessment (SEA) for the Cape Breton Region, inclusive of the Bras d’Or Lakes, Acoustic Doppler Current Profiler (ADCP) units were deployed at Barra Strait, Seal Island Bridge and Carey Point to collect tidal flow information.  Potential sites for ti

Faits marquants sur l’énergie marémotrice » infrastructures et pratiques exemplaires

A Framework for Environmental Risk Assessment and Decision-Making for Tidal Energy Development in Canada

March – May 2012

There is still a high degree of uncertainty regarding the environmental implications of in-stream tidal energy initiatives. This report outlines a science-based environmental risk assessment and decision-making framework for the emergent in-stream tidal energy industry.

Faits marquants sur l’énergie marémotrice » plancher océanique, sédiments et domaine benthique

Effects of Energy Extraction on Sediment Dynamics in Intertidal Ecosystems of the Minas Basin

January 2010 – May 2012

This project assessed how the dynamics of sedimentation change when energy is extracted from a macro-tidal system. The differences in tidal prism and energy between neap and spring tidal cycles were used as a proxy for energy extraction by in-stream tidal power devices.