Research Portal

Displaying 1 – 5 of 5 results

Filters

Faits marquants sur l’énergie marémotrice » plancher océanique, sédiments et domaine benthique

Seasonal Erodibility of Sediment in the Upper Bay of Fundy

February 2012 – January 2015

This project developed methods for studying sedimentation to the macro-tidal flats of the upper Bay of Fundy. The researchers looked at seasonal variation in the erodibility of sediments in tidal creeks and flats using a Gust Erosion Chamber and repeated grain size surveys.

Faits marquants sur l’énergie marémotrice » aspects socio-économiques et utilisations traditionnelles » Strategic Environmental Assessments (SEAs)

Southwest Nova Scotia Tidal Energy Resource Assessment

June 2013

This is an assessment of the in-stream tidal resources in Southwest Nova Scotia consisting of Shelburne, Yarmouth and Digby Counties.

Faits marquants sur l’énergie marémotrice » aspects socio-économiques et utilisations traditionnelles » Strategic Environmental Assessments (SEAs)

Marine Renewable Energy: Background Report To Support a Strategic Environmental Assessment (SEA) for the Cape Breton Coastal Region, inclusive of the Bras D’Or Lakes

June – December 2012

In 2011 following a competitive request for proposal process, OERA commissioned AECOM’s Halifax office to undertake a Strategic Environmental Assessment (SEA) for marine renewable energy in Cape Breton.

Faits marquants sur l’énergie marémotrice » plancher océanique, sédiments et domaine benthique

Impacts of Tidal Energy Extraction on Sediment Dynamics in Minas Basin, Bay of Fundy

February 2010 – December 2012

Researchers developed a numerical hydrodynamic and sediment transport model for Minas Basin in the Bay of Fundy, focusing on the sediment dynamics of the tidal inlets and flats.

Faits marquants sur l’énergie marémotrice » plancher océanique, sédiments et domaine benthique

Effects of Energy Extraction on Sediment Dynamics in Intertidal Ecosystems of the Minas Basin

January 2010 – May 2012

This project assessed how the dynamics of sedimentation change when energy is extracted from a macro-tidal system. The differences in tidal prism and energy between neap and spring tidal cycles were used as a proxy for energy extraction by in-stream tidal power devices.