Research Portal

Displaying 1 – 10 of 17 results

Filters

Faits marquants sur l’énergie marémotrice » technologies

Imaging Sonar Data Automation Feasibility Study

May 2021 – June 2022

Multibeam imaging sonars can be used to monitor fish and marine mammal presence and behaviours in the near-field of tidal turbine installations, including evaluating avoidance, evasion, and potential blade strikes.

Sujets en rapport avec les technologies propres » énergie éolienne

Access to US Markets (Offshore Wind)

September – November 2021

Nova Scotia’s offshore wind resource has the potential to meet the growing clean energy needs of the Northeastern US.

Faits marquants sur l’énergie marémotrice » infrastructures et pratiques exemplaires

Review of Nova Scotia Power Transmission System Interconnection Requirements

April – May 2021

Power Advisory was engaged by OERA on behalf of the Nova Scotia Department of Energy & Mines to review the recently released Nova Scotia Power Transmission System Interconnection Requirements (TSIR) and identify any gaps between recommendations made by Power Advisory in their August 2020 repo

Sujets en rapport avec les technologies propres » énergie éolienne

Assessing the Economic Impacts of Developing the Port of Sheet Harbour Into an Offshore Wind Hub

February – March 2021

Currently, multiple OSW projects off the Northeast US are under development. The OSW capacity in the US is forecast to grow significantly in the next decade with approximately 11 GW already contracted to be installed over the next years.

Sujets en rapport avec les technologies propres » énergie éolienne

Stimulating Offshore Wind Development in Nova Scotia

January – March 2021

To attract offshore wind investment to Nova Scotia, it is important to understand the development in other jurisdictions. If Nova Scotia developed offshore wind in its coastal waters, it would compete for investment against these jurisdictions.

Faits marquants sur l’énergie marémotrice » infrastructures et pratiques exemplaires

Value Proposition for Tidal Energy Development in Nova Scotia, Atlantic Canada and Canada

January 2014 – April 2015

This study shows there is substantial potential economic opportunity in building a tidal energy industry in Canada. It indicates that tidal energy could reduce our dependence on fossil fuels and create a new industry offering significant socio-economic benefits.

Faits marquants sur l’énergie marémotrice » technologies

Observations of Marine Mammals in Petit Passage and Grand Passage, Nova Scotia and Adjacent Waters in the Eastern Bay of Fundy to Assess Species Composition, Distribution, Number and Seasonality.

June – December 2014

This research project implemented a common mobile tool, database, and alert system for recording and acting on marine life sightings, while engaging coastal communities in protection of the marine environment and using crowd-sourcing to collect data for scientific research.

Faits marquants sur l’énergie marémotrice » vie marine

Investigation of the Vertical Distribution, Movement and Abundance of Fish in the Vicinity of Proposed Tidal Power Energy Conversion Devices

March 2010 – December 2014

This project studied active fish avoidance of a turbine using the Coda Octopus Echoscope II 3-D multi-beam sonar mounted on a bottom platform.

Faits marquants sur l’énergie marémotrice » vie marine

Atlantic Sturgeon Spatial and Temporal Distribution in Minas Passage, Nova Scotia, Canada, a Region of Future Tidal Energy Extraction

January 2010 – January 2014

In the Bay of Fundy, Atlantic sturgeon from endangered and threatened populations in the USA and Canada migrate through Minas Passage to enter and leave Minas Basin.

Faits marquants sur l’énergie marémotrice » aspects socio-économiques et utilisations traditionnelles

Tidal Energy: Strategic Environmental Assessment for the Cape Breton Coastal Region and Bras d’Or Lakes (Phase I) – Community Response Report

January 2014

This report describes and summarizes the outcomes of a stakeholder and community engagement program implemented as the second stage of the Strategic Environmental Assessment (SEA) on Marine Renewable Energy (MRE) for the Cape Breton Coastal Region and the Bras d'Or Lakes.  It follows and com