Research Portal

Displaying 1 – 10 of 12 results

Filters

Faits marquants sur l’énergie marémotrice » caractérisation et modélisation des ressources en énergie marémotrice

How Does Sound Travel in High Energy Environments? Effectiveness of Acoustic Monitoring Systems and Turbine Audibility Assessment

April 2017 – December 2020

The researchers are designing and implementing a long-term acoustic monitoring program to support tidal energy development in the Bay of Fundy. Specialized acoustic instrumentation was deployed for a two-month period in Grand Passage to advance understanding how turbulence affects the abilit

Faits marquants sur l’énergie marémotrice » caractérisation et modélisation des ressources en énergie marémotrice

Reducing Costs of Tidal Energy through a Comprehensive Characterization of Turbulence in Minas Passage

October 2017 – March 2020

Turbulence is a significant issue at every site being considered for in-stream tidal energy development.

Faits marquants sur l’énergie marémotrice » technologies

Advancements in technologies and techniques for tidal energy development 

April 2017 – March 2020

This project was funded under the Natural Resources Canada Energy Innovation Program and supported research into innovative technologies and techniques to advance the tidal energy sector.  The research was comprised of five unique research initiatives with focus areas in environment

Faits marquants sur l’énergie marémotrice » technologies

Developing Enhanced Marine Operations (DEMO) in High Flow Tidal Environments

October 2017 – October 2019

Conventional subsea remotely operated vehicles (ROVs) perform poorly in currents exceeding 1.5 m/s. This is a key operating limitation in the success and cost of marine operations in the Bay of Fundy, where current speeds reach 5 m/s.

Faits marquants sur l’énergie marémotrice » caractérisation et modélisation des ressources en énergie marémotrice

Turbine Wake Characterization

November 2017 – March 2019

Turbine wake characterization is a key endeavour to the development of in-stream tidal turbine arrays.  In a sense, a turbine’s footprint includes its wake, wherein flow speeds are less and turbulence is elevated compared to the ambient surroundings.  It is thus desired to not just deli

Faits marquants sur l’énergie marémotrice » technologies

Acceleration/Particle Velocity (PA/PV) Measurement System Evaluation in a Tidal Environment

February 2017 – December 2018

The objective of this project was designing and running a field experiment to test the performance of the Particle Acceleration/Particle Velocity (PA/PV) vector sensor.

Faits marquants sur l’énergie marémotrice » technologies

Assessing Corrosion, Wear, Fatigue and VIV on Moorings and Cabling to Reduce Risk in Marine Operations

October 2017 – August 2018

The cost of cabling and moorings over the entire life of a tidal energy project is a significant proportion of total project expenditures and the potential failure of these components remains a major risk for the emerging tidal energy sector.

Faits marquants sur l’énergie marémotrice » caractérisation et modélisation des ressources en énergie marémotrice

Going with the Flow II: Using Drifters to Address Uncertainties in the Spatial Variation of Tidal Flows

October 2017 – June 2018

Drifters are one of the oldest, simplest and most reliable methods for measuring ocean currents. Drifters also provide a simple, low risk platform from which to gather acoustic information along flow streamlines or ‘drift tracks’.

Faits marquants sur l’énergie marémotrice » caractérisation et modélisation des ressources en énergie marémotrice

Turbulence Dissipation Rates from Horizontal Velocity Profiles at Mid-Depth in Fast Tidal Flows

December 2017

This study characterizes the turbulence in a tidal channel in the Bay of Fundy that has been identified for development as a tidal power resource.

Faits marquants sur l’énergie marémotrice » technologies

FORCE Data Management System/User Interface

April – June 2017

This project defined a Data Management System (DMS) and user interface solution for use by FORCE.