Research Portal

Displaying 1 – 5 of 5 results

Filters

Faits marquants sur l’énergie marémotrice » technologies

Imaging Sonar Data Automation Feasibility Study

May 2021 – June 2022

Multibeam imaging sonars can be used to monitor fish and marine mammal presence and behaviours in the near-field of tidal turbine installations, including evaluating avoidance, evasion, and potential blade strikes.

Faits marquants sur l’énergie marémotrice » technologies

Observations of Marine Mammals in Petit Passage and Grand Passage, Nova Scotia and Adjacent Waters in the Eastern Bay of Fundy to Assess Species Composition, Distribution, Number and Seasonality.

June – December 2014

This research project implemented a common mobile tool, database, and alert system for recording and acting on marine life sightings, while engaging coastal communities in protection of the marine environment and using crowd-sourcing to collect data for scientific research.

Faits marquants sur l’énergie marémotrice » caractérisation et modélisation des ressources en énergie marémotrice

Turbulence and Drag in a High Reynolds Number Tidal Passage Targeted for In-Stream Tidal Power

August 2013

Results are presented from an investigation of turbulence and bottom drag carried out in Grand Passage, lower Bay of Fundy.

Faits marquants sur l’énergie marémotrice » caractérisation et modélisation des ressources en énergie marémotrice

Passive Acoustic Monitoring of Cetacean Activity Patterns and Movements Pre- and Post-deployment of TISEC devices in Minas Passage

June 2011 – July 2013

This project aimed to conduct pre- and post- in-stream tidal energy device deployment assessments of marine mammal activity and to assess the potential risk for interaction with turbine infrastructure.

Faits marquants sur l’énergie marémotrice » caractérisation et modélisation des ressources en énergie marémotrice

Cross Coupling between Device Level CFD and Oceanographic Models Applied to Multiple TISECs in Minas Passage

October 2011 – January 2013

This project aimed to develop a link between oceanographic computer models and Computational Fluid Dynamics (CFD) models in order to improve state-of-the-art modelling techniques used for resource assessments and tidal turbine siting for both single and multiple in-stream tidal energy devices.