Research Portal

Displaying 21 – 30 of 56 results

Filters

Faits marquants sur l’énergie marémotrice » caractérisation et modélisation des ressources en énergie marémotrice

Remote Acoustic Measurements of Turbulence in High-Flow Tidal Channels during High Wave Conditions

April 2018 – April 2019

Many of the high-flow tidal channels targeted for worldwide in-stream hydro-electric development are impacted by surface gravity waves incident from a large exterior basin (e.g. the Bay of Fundy/Gulf of Maine/North Atlantic).

Faits marquants sur l’énergie marémotrice » caractérisation et modélisation des ressources en énergie marémotrice

Turbine Wake Characterization

November 2017 – March 2019

Turbine wake characterization is a key endeavour to the development of in-stream tidal turbine arrays.  In a sense, a turbine’s footprint includes its wake, wherein flow speeds are less and turbulence is elevated compared to the ambient surroundings.  It is thus desired to not just deli

Faits marquants sur l’énergie marémotrice » vie marine

Quantifying Demographics and Monitoring Movement of American Lobster in the Minas Passage and Basin

October 2017 – March 2019

The project consists of lobster fishing in Minas Passage during the fall lobster season to collect, assess and tag lobsters in this area, then fishing in Minas Basin from April to May to assess the spawning characteristics of lobster tagged the previous fall, then returning to Minas Passage to fi

Faits marquants sur l’énergie marémotrice » vie marine

Real-Time, Targeted Imaging of Turbine-Marine Life Interactions

March 2017 – February 2019

The research goal is to redesign and validate a dynamic mount to improve targeted real-time imaging of marine life in the near-field zone of a tidal turbine. The adjustable mount will enable imaging sensors to be aimed directly facing the tidal turbine.

Faits marquants sur l’énergie marémotrice » vie marine

Using Radar to Evaluate Seabird Abundance and Habitat Use at the Fundy Ocean Research Center for Energy Site near Parrsboro, Nova Scotia

April – September 2018

Shore-based seabird surveys conducted at the Fundy Ocean Research Center for Energy (FORCE) in Parrsboro, NS, determine abundance, habitat use and potential risk to seabirds at the site.

Faits marquants sur l’énergie marémotrice » caractérisation et modélisation des ressources en énergie marémotrice

Going with the Flow II: Using Drifters to Address Uncertainties in the Spatial Variation of Tidal Flows

October 2017 – June 2018

Drifters are one of the oldest, simplest and most reliable methods for measuring ocean currents. Drifters also provide a simple, low risk platform from which to gather acoustic information along flow streamlines or ‘drift tracks’.

Faits marquants sur l’énergie marémotrice » vie marine

Measuring the Acoustic Detection Range of Large Whales from an Ocean Glider to Improve an Acoustic Whale Alert System for use by the Offshore Marine Industry in Atlantic Canada

April 2017 – January 2018

Researchers investigated a novel and in-development passive acoustic monitoring (PAM) system for use as a marine mammal detection technique. The work builds on a current research initiative between Dalhousie University and Woods Hole Oceanographic Institute (WHOI).

Faits marquants sur l’énergie marémotrice » caractérisation et modélisation des ressources en énergie marémotrice

Turbulence Dissipation Rates from Horizontal Velocity Profiles at Mid-Depth in Fast Tidal Flows

December 2017

This study characterizes the turbulence in a tidal channel in the Bay of Fundy that has been identified for development as a tidal power resource.

Faits marquants sur l’énergie marémotrice » vie marine

Finite Element Analysis to Assess Fish Mortality from Interactions with Tidal Turbine Blades

February – December 2017

The research project used finite element analysis (FEA) to simulate the impact of a tidal turbine blade on fish, and assess whether mortality of marine life can be expected in such an event.

Faits marquants sur l’énergie marémotrice » caractérisation et modélisation des ressources en énergie marémotrice

Going with the Flow: Advancement of Drifting Platforms for use in Tidal Energy Site Assessment & Environmental Monitoring

April 2015 – August 2017

This research project aimed to apply a simple and low cost philosophy to ocean observation by developing an inexpensive low-profile surface drifter for use in initial assessment of potential tidal energy development opportunities.  The project addressed limitations in the existing drifter de