Research Portal

Displaying 1 – 10 of 12 results

Filters

Faits marquants sur l’énergie marémotrice » technologies

Imaging Sonar Data Automation Feasibility Study

May 2021 – June 2022

Multibeam imaging sonars can be used to monitor fish and marine mammal presence and behaviours in the near-field of tidal turbine installations, including evaluating avoidance, evasion, and potential blade strikes.

Sujets en rapport avec les technologies propres » énergie géothermique

Phase II: Direct Use of Geothermal Heat in Nova Scotia

August – December 2021

Objectives:

Faits marquants sur l’énergie marémotrice » infrastructures et pratiques exemplaires

Review of Nova Scotia Power Transmission System Interconnection Requirements

April – May 2021

Power Advisory was engaged by OERA on behalf of the Nova Scotia Department of Energy & Mines to review the recently released Nova Scotia Power Transmission System Interconnection Requirements (TSIR) and identify any gaps between recommendations made by Power Advisory in their August 2020 repo

Sujets en rapport avec l’hydrogène » études de faisabilité

Net-Zero Future: A Feasibility Study of Hydrogen Production, Storage, Distribution and Use in The Maritimes - NL Extension

January – March 2021

This study investigated what role hydrogen can play in Newfoundland and Labrador’s future energy system.

Faits marquants sur l’énergie marémotrice » vie marine

Investigation of the Vertical Distribution, Movement and Abundance of Fish in the Vicinity of Proposed Tidal Power Energy Conversion Devices

March 2010 – December 2014

This project studied active fish avoidance of a turbine using the Coda Octopus Echoscope II 3-D multi-beam sonar mounted on a bottom platform.

Faits marquants sur l’énergie marémotrice » vie marine

Atlantic Sturgeon Spatial and Temporal Distribution in Minas Passage, Nova Scotia, Canada, a Region of Future Tidal Energy Extraction

January 2010 – January 2014

In the Bay of Fundy, Atlantic sturgeon from endangered and threatened populations in the USA and Canada migrate through Minas Passage to enter and leave Minas Basin.

Faits marquants sur l’énergie marémotrice » plancher océanique, sédiments et domaine benthique

Impacts of Tidal Energy Extraction on Sediment Dynamics in Minas Basin, Bay of Fundy

February 2010 – December 2012

Researchers developed a numerical hydrodynamic and sediment transport model for Minas Basin in the Bay of Fundy, focusing on the sediment dynamics of the tidal inlets and flats.

Faits marquants sur l’énergie marémotrice » plancher océanique, sédiments et domaine benthique

Effects of Energy Extraction on Sediment Dynamics in Intertidal Ecosystems of the Minas Basin

January 2010 – May 2012

This project assessed how the dynamics of sedimentation change when energy is extracted from a macro-tidal system. The differences in tidal prism and energy between neap and spring tidal cycles were used as a proxy for energy extraction by in-stream tidal power devices.

Faits marquants sur l’énergie marémotrice » caractérisation et modélisation des ressources en énergie marémotrice

Assessing the Far Field Effects of Tidal Power Extraction on the Bay of Fundy, Gulf of Maine and Scotian Shelf

January 2010 – April 2012

The Bay of Fundy and Gulf of Maine system has a natural resonant period very close to the main semi-diurnal lunar tide. This results in the world’s highest tides and strong tidal currents in the Bay of Fundy, particularly in the Minas Channel and Minas Basin.

Faits marquants sur l’énergie marémotrice » caractérisation et modélisation des ressources en énergie marémotrice

Assessment of Hydrodynamic Impacts throughout the Bay of Fundy and Gulf of Maine due to Tidal Energy Extraction by Tidal Lagoons

January 2010 – December 2011

The researchers extended existing hydrodynamic models of tidal flows in the Bay of Fundy to simulate the presence and operation of a tidal lagoon project located in the Minas Basin.