Research Portal

Displaying 1 – 10 of 14 results

Filters

Sujets en rapport avec les technologies propres » énergie éolienne

Capacity Building for the Sustainable and Inclusive Development of Nova Scotia's Offshore Wind Resource

March 2022 – November 2024

Working together with our partners, Net Zero Atlantic will build local capacity in rural, Mi'kmaw, and other equity-deserving Nova Scotia communities so they can beneficially participate in any related impact assessments in Nova Scotia's offshore

This project has two parts:

Sujets en rapport avec les technologies propres » études de faisabilité

The importance of ESG reporting for Nova Scotia’s energy sector supply chain

March – May 2022

Demonstrating commitment to ESG (Environmental, Social, Governance) principles and reporting has become an integral part of partner selection and investment decision making processes in many industries and jurisdictions.

Sujets en rapport avec les technologies propres » études de faisabilité

Energy Storage Policy and Practices

March – May 2022

To accommodate expanded renewable energy production and accelerated coal plant closures, Nova Scotia’s electricity grid will require additional resources that can store energy and provide reliability.  In this context, a comprehensive understanding of the policy and practices that can be use

Faits marquants sur l’énergie marémotrice » caractérisation et modélisation des ressources en énergie marémotrice

Drones and Drifters – The Great Pumpkin Race

October 2016 – July 2017

This project tested and developed a new low-cost approach to collecting oceanographic measurements for use in tidal initial site assessments. The plan combines one of the oldest tools in oceanography, the drifter, with one of the newest, the drone.

Faits marquants sur l’énergie marémotrice » vie marine

Tidal Turbine Marine Life Interaction Study: Fish

May 2016 – May 2017

This study at Dalhousie University’s Aquatron test tank monitored the behaviour of striped bass in the presence of an active tidal turbine.  The research drew on expertise and experience from different parts of Canada and Europe over a one year project period.

Faits marquants sur l’énergie marémotrice » vie marine

Use of Bottom-Mounted Hydro-Acoustic Sonar to Assess Fish Presence and Vertical Distribution at the FORCE In-Stream Tidal Turbine Test Site in Minas Passage

May 2016 – April 2017

To better understand fish use of the Fundy Ocean Research Center for Energy (FORCE) site and their potential for interaction with in-stream tidal devices, this study examined how fish density and vertical distribution varied with respect to environmental factors, in particular tidal stage and tim

Faits marquants sur l’énergie marémotrice » technologies

Advancing Tidal Energy Turbine Operations through High Fidelity Tug Propulsion and Control Simulation Software

November 2016 – March 2017

The project objective was to develop a numerical model of a tug boat and its propulsion system to accurately predict its dynamic behaviour in turbulent tidal flows.

Faits marquants sur l’énergie marémotrice » vie marine

Marine Fish Monitoring Program Tidal Energy Demonstration Site – Minas Passage

May 2016 – March 2017

This is the final report submitted to the Fundy Ocean Research Center on Energy (FORCE) for the Marine Fish Monitoring Program Tidal Energy Demonstration Site – Minas Passage.

Faits marquants sur l’énergie marémotrice » infrastructures et pratiques exemplaires

Environmental Effects Monitoring Project

January 2016 – January 2017

FORCE developed an Environmental Effects Monitoring Program (EEMP) to study five major subject areas: fish, marine mammals, lobster, marine noise and seabirds. The EEMP was designed to be adaptive in nature.

Faits marquants sur l’énergie marémotrice » caractérisation et modélisation des ressources en énergie marémotrice

Turbulence in Grand Passage Nova Scotia: Measures of Intermittency

April – December 2016

Turbulence research is very important to advancing the in-stream tidal energy sector, however turbulence in general is not well understood.  Measurement at prospective turbine locations is essential prior to development, given the high degree of spatial variability between sites.