Research Portal
Displaying 1 – 10 of 30 results
Sujets en rapport avec les technologies propres » énergie géothermique
Community Geothermal Resource: Capacity Assessment and Training Program (GeoCAT)
March 2022 – November 2024
Working together with our partners, Net Zero Atlantic will build project development capacity for mid-depth geothermal energy-based projects in Mi’kmaw and rural Nova Scotia communities.
This project has two parts:
Sujets en rapport avec les technologies propres » énergie géothermique
Phase III: Nova Scotia Geothermal Strategic Planning Proposal
March – May 2022
The Phase I and Phase II geothermal reports demonstrated that Nova Scotia needs to gather more subsurface data – in particular by drilling one or more exploration wells to further ‘de-risk’ the province’s mid-depth geothermal resources. For these wells to be helpful, they must be located in geol
Sujets en rapport avec les technologies propres » énergie géothermique
Phase II: Direct Use of Geothermal Heat in Nova Scotia
August – December 2021
Objectives:
Faits marquants sur l’énergie marémotrice » caractérisation et modélisation des ressources en énergie marémotrice
The Vectron2 Project: Turbulence Measurements for the In-stream Tidal Energy Industry
March 2019 – November 2021
The Vectron is a new sensor used for measuring turbulence velocity within a tidal turbine’s swept area. The Vectron has been successfully prototyped, where next steps are to take the technology to the ‘industry-ready’ stage of development and the focus of this project.
Faits marquants sur l’énergie marémotrice » caractérisation et modélisation des ressources en énergie marémotrice
How Does Sound Travel in High Energy Environments? Effectiveness of Acoustic Monitoring Systems and Turbine Audibility Assessment
April 2017 – December 2020
The researchers are designing and implementing a long-term acoustic monitoring program to support tidal energy development in the Bay of Fundy. Specialized acoustic instrumentation was deployed for a two-month period in Grand Passage to advance understanding how turbulence affects the ability to
Sujets en rapport avec les technologies propres » énergie géothermique
Phase I: Assessment of Geothermal Resources in Onshore Nova Scotia
May – November 2020
The objective of this project is to: (i) provide a review of the general types of geothermal resources in Nova Scotia (excluding shallow resources utilized by ground-source heat pumps) with reference to key regional, national and global examples; (ii) provide a preliminary evaluation of the poten
Faits marquants sur l’énergie marémotrice » caractérisation et modélisation des ressources en énergie marémotrice
Reducing Costs of Tidal Energy through a Comprehensive Characterization of Turbulence in Minas Passage
October 2017 – March 2020
Turbulence is a significant issue at every site being considered for in-stream tidal energy development.
Faits marquants sur l’énergie marémotrice » caractérisation et modélisation des ressources en énergie marémotrice
Multi-Scale Turbulence Measurement in the Aquatron Laboratory
July 2018 – July 2019
This project has two primary objectives - to characterize the flow and turbulence in the Aquatron facility pool tank using turbulence sensors calibrated against a traceable standard; and to test technologies for investigating the horizontal variability of turbulence in real-world tidal channels.
Faits marquants sur l’énergie marémotrice » caractérisation et modélisation des ressources en énergie marémotrice
Remote Acoustic Measurements of Turbulence in High-Flow Tidal Channels during High Wave Conditions
April 2018 – April 2019
Many of the high-flow tidal channels targeted for worldwide in-stream hydro-electric development are impacted by surface gravity waves incident from a large exterior basin (e.g. the Bay of Fundy/Gulf of Maine/North Atlantic).
Faits marquants sur l’énergie marémotrice » caractérisation et modélisation des ressources en énergie marémotrice
Turbine Wake Characterization
November 2017 – March 2019
Turbine wake characterization is a key endeavour to the development of in-stream tidal turbine arrays. In a sense, a turbine’s footprint includes its wake, wherein flow speeds are less and turbulence is elevated compared to the ambient surroundings. It is thus desired to not just delineate wake