Research Portal

Displaying 11 – 16 of 16 results

Filters

Tidal Energy » Marine Life

Testing of 360-Degree Imaging Technologies for Improved Animal Detection around Tidal Energy Installations

May 2019 – February 2020

The research goal was to conduct a field study to test the performance of a new imaging camera system mounted on a floating tidal platform deployed in Grand Passage, Bay of Fundy.  Field testing featured testing of different camera mount locations on the platform in order to optimize fi

Tidal Energy » Marine Life

Multipurpose X-Band Marine Radar Network for the Minas Passage

January – November 2019

Marine X-band radar locates vessels and features, including coastlines and buoys.  It filters distracting signals (eg.

Tidal Energy » Tidal Resource Characterization and Modelling

Turbulence and Bottom Stress in Minas Passage and Grand Passage

September 2011 – February 2015

This project aimed to investigate turbulence and bottom stress at two sites being targeted for in-stream tidal power development in Nova Scotia: Minas Passage in the Upper Bay of Fundy and Grand Passage, located between Brier and Long Island in the lower Bay of Fundy.

Tidal Energy » Tidal Resource Characterization and Modelling

Passive Acoustic Monitoring of Cetacean Activity Patterns and Movements Pre- and Post-deployment of TISEC devices in Minas Passage

June 2011 – July 2013

This project aimed to conduct pre- and post- in-stream tidal energy device deployment assessments of marine mammal activity and to assess the potential risk for interaction with turbine infrastructure.

Tidal Energy » Marine Life

Acoustic Tracking of Fish Movements in the Minas Passage and FORCE Crown Lease Area: Pre-Turbine Baseline Studies

June 2011 – July 2013

This project used animal tracking technology developed by VEMCO, a division of AMIRIX Systems of Halifax, NS. The technology allows researchers to track animal movements and behaviour over a scale of kilometers.

Tidal Energy » Tidal Resource Characterization and Modelling

Cross Coupling between Device Level CFD and Oceanographic Models Applied to Multiple TISECs in Minas Passage

October 2011 – January 2013

This project aimed to develop a link between oceanographic computer models and Computational Fluid Dynamics (CFD) models in order to improve state-of-the-art modelling techniques used for resource assessments and tidal turbine siting for both single and multiple in-stream tidal energy devices.