Research Portal

Displaying 1 – 10 of 11 results

Filters

Clean Tech » Wind

Capacity Building for the Sustainable and Inclusive Development of Nova Scotia's Offshore Wind Resource

March 2022 – November 2024

Working together with our partners, Net Zero Atlantic will build local capacity in rural, Mi'kmaw, and other equity-deserving Nova Scotia communities so they can beneficially participate in any related impact assessments in Nova Scotia's offshore

This project has two parts:

Clean Tech » Geothermal

Community Geothermal Resource: Capacity Assessment and Training Program (GeoCAT)

March 2022 – November 2024

Working together with our partners, Net Zero Atlantic will build project development capacity for mid-depth geothermal energy-based projects in Mi’kmaw and rural Nova Scotia communities.

This project has two parts:

Clean Tech » Geothermal

Phase III: Nova Scotia Geothermal Strategic Planning Proposal

March – May 2022

The Phase I and Phase II geothermal reports demonstrated that Nova Scotia needs to gather more subsurface data – in particular by drilling one or more exploration wells to further ‘de-risk’ the province’s mid-depth geothermal resources.  For these wells to be helpful, they must be located in

Tidal Energy » Tidal Resource Characterization and Modelling

How Does Sound Travel in High Energy Environments? Effectiveness of Acoustic Monitoring Systems and Turbine Audibility Assessment

April 2017 – December 2020

The researchers are designing and implementing a long-term acoustic monitoring program to support tidal energy development in the Bay of Fundy. Specialized acoustic instrumentation was deployed for a two-month period in Grand Passage to advance understanding how turbulence affects the abilit

Tidal Energy » Tidal Resource Characterization and Modelling

Reducing Costs of Tidal Energy through a Comprehensive Characterization of Turbulence in Minas Passage

October 2017 – March 2020

Turbulence is a significant issue at every site being considered for in-stream tidal energy development.

Tidal Energy » Tidal Resource Characterization and Modelling

Multi-Scale Turbulence Measurement in the Aquatron Laboratory

July 2018 – July 2019

This project has two primary objectives - to characterize the flow and turbulence in the Aquatron facility pool tank using turbulence sensors calibrated against a traceable standard; and to test technologies for investigating the horizontal variability of turbulence in real-world tidal channels.

Tidal Energy » Tidal Resource Characterization and Modelling

Remote Acoustic Measurements of Turbulence in High-Flow Tidal Channels during High Wave Conditions

April 2018 – April 2019

Many of the high-flow tidal channels targeted for worldwide in-stream hydro-electric development are impacted by surface gravity waves incident from a large exterior basin (e.g. the Bay of Fundy/Gulf of Maine/North Atlantic).

Tidal Energy » Tidal Resource Characterization and Modelling

Turbine Wake Characterization

November 2017 – March 2019

Turbine wake characterization is a key endeavour to the development of in-stream tidal turbine arrays.  In a sense, a turbine’s footprint includes its wake, wherein flow speeds are less and turbulence is elevated compared to the ambient surroundings.  It is thus desired to not just deli

Tidal Energy » Tidal Resource Characterization and Modelling

Going with the Flow II: Using Drifters to Address Uncertainties in the Spatial Variation of Tidal Flows

October 2017 – June 2018

Drifters are one of the oldest, simplest and most reliable methods for measuring ocean currents. Drifters also provide a simple, low risk platform from which to gather acoustic information along flow streamlines or ‘drift tracks’.

Tidal Energy » Tidal Resource Characterization and Modelling

Turbulence Dissipation Rates from Horizontal Velocity Profiles at Mid-Depth in Fast Tidal Flows

December 2017

This study characterizes the turbulence in a tidal channel in the Bay of Fundy that has been identified for development as a tidal power resource.